Extensions 1→N→G→Q→1 with N=C3×D5 and Q=C22⋊C4

Direct product G=N×Q with N=C3×D5 and Q=C22⋊C4
dρLabelID
C3×D5×C22⋊C4120C3xD5xC2^2:C4480,673

Semidirect products G=N:Q with N=C3×D5 and Q=C22⋊C4
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊(C22⋊C4) = C2×D6⋊F5φ: C22⋊C4/C22C22 ⊆ Out C3×D5120(C3xD5):(C2^2:C4)480,1000
(C3×D5)⋊2(C22⋊C4) = D5×D6⋊C4φ: C22⋊C4/C2×C4C2 ⊆ Out C3×D5120(C3xD5):2(C2^2:C4)480,547
(C3×D5)⋊3(C22⋊C4) = D5×C6.D4φ: C22⋊C4/C23C2 ⊆ Out C3×D5120(C3xD5):3(C2^2:C4)480,623
(C3×D5)⋊4(C22⋊C4) = C2×D10.D6φ: C22⋊C4/C23C2 ⊆ Out C3×D5120(C3xD5):4(C2^2:C4)480,1072
(C3×D5)⋊5(C22⋊C4) = C6×C22⋊F5φ: C22⋊C4/C23C2 ⊆ Out C3×D5120(C3xD5):5(C2^2:C4)480,1059

Non-split extensions G=N.Q with N=C3×D5 and Q=C22⋊C4
extensionφ:Q→Out NdρLabelID
(C3×D5).(C22⋊C4) = D10.20D12φ: C22⋊C4/C22C22 ⊆ Out C3×D5120(C3xD5).(C2^2:C4)480,243
(C3×D5).2(C22⋊C4) = D10.10D12φ: C22⋊C4/C2×C4C2 ⊆ Out C3×D5120(C3xD5).2(C2^2:C4)480,311
(C3×D5).3(C22⋊C4) = C3×D10.3Q8φ: C22⋊C4/C2×C4C2 ⊆ Out C3×D5120(C3xD5).3(C2^2:C4)480,286

׿
×
𝔽